Stochastic integral representation of some martingales

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Ito calculus and stochastic integral representation of martingales

We develop a non-anticipative calculus for functionals of a continuous semimartingale, using an extension of the Ito formula to path-dependent functionals which possess certain directional derivatives. The construction is based on a pathwise derivative, introduced by B Dupire, for functionals on the space of right-continuous functions with left limits. We show that this functional derivative ad...

متن کامل

Predictable Representation Property of Some Hilbertian Martingales

We prove as for the real case that a martingale with values in a separabale real Hilbert space is extremal if and only if it satisfies the predictable representation property.

متن کامل

Integral representation of martingales and endogenous completeness of financial models

Let Q and P be equivalent probability measures and let ψ be a Jdimensional vector of random variables such that dQ dP and ψ are defined in terms of a weak solution X to a d-dimensional stochastic differential equation. Motivated by the problem of endogenous completeness in financial economics we present conditions which guarantee that any local martingale under Q is a stochastic integral with r...

متن کامل

Stochastic integral representations of quantum martingales on multiple Fock space

In this paper a quantum stochastic integral representation theorem is obtained for unbounded regular martingales with respect to multidimensional quantum noise. This simultaneously extends results of Parthasarathy and Sinha to unbounded martingales and those of the author to multidimensions.

متن کامل

Concrete Representation of Martingales

Let (fn) be a mean zero vector valued martingale sequence. Then there exist vector valued functions (dn) from [0, 1] such that ∫ 1 0 dn(x1, . . . , xn)dxn = 0 for almost all x1, . . . , xn−1, and such that the law of (fn) is the same as the law of ( ∑n k=1 dk(x1, . . . , xk)). Similar results for tangent sequences and sequences satisfying condition (C.I.) are presented. We also present a weaker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1977

ISSN: 0022-247X

DOI: 10.1016/0022-247x(77)90197-4